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ABSTRACT 

We present algorithms for determining the attachment point locations of various 
spatial in-parallel mechanisms to achieve desired motion of the coupler element. This is 
done for mechanisms with a variety of component chains such as R-S, S-P, S-S. The 
algorithms formulate the various problems as sets of algebraic equations to be solved for 
the attachment point locations. These procedures can be utilized to generate good starting 
points for detailed elastokinematic system optimization. 
 

INTRODUCTION 

The proper design of automotive suspensions is critical for achieving good “ride 
and handling.” Ride refers to the vehicle’s behavior during straight-line motion. Ride 
metrics include measures of how well the suspension absorbs bumps on the road and how 
the vehicle behaves during acceleration and braking. Handling refers to the vehicle’s 
response to steering inputs. Over the years a variety of suspension mechanism types have 
been used in automobiles. These include the short-long arm suspension [1], the 
MacPherson strut [2], the multi-link rear suspension [3, 4], the multi-link front 
suspension, and the short-long arm front suspension with a true king-pin [5], etc. 

  
Numerous researchers have studied computer-based analysis and synthesis of 

automotive suspensions. Suh [1] uses displacement matrices coupled with constraint 
equations of links to give practical kinematic equations for analysis and synthesis of three 
dimensional suspension linkages. Suh [6], has also developed the notion of instantaneous 
screw axes for the vehicle sprung mass. Iijima et al. [7] describe the issues involved in 
the design of the front and rear suspensions for the Nissan 300ZX. Fuhrmann [8] 
describes the Porsche chassis design philosophy and in particular, the elastokinematic 
design of the Weissach-Axle on the Porsche 928. Simionescu, Smith and Tempea [9] 
develop a kinematic model of a rack-and-pinion type steering linkage and then perform 
mechanism synthesis to ensure Ackermann steering and good transmissibility of motion. 
Dijksman et al.,  [10] show by means of detailed mathematical analysis that specific six-
bar steering linkages of the Watt-II type are better approximations to the Ackermann 
steering requirements than four-bar linkages.  
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SIGNIFICANCE OF THIS PAPER  

The present work is a compilation of various mathematical models for rapidly 
computing suspension linkage geometry parameters from ride-handling requirements. 
These procedures can be used to generate good starting points for detailed 
elastokinematic system optimization. 

 
EXPRESSING REQUIREMENTS MATHEMATICALLY  

Requirements on wheel motion relative to the sprung mass have traditionally 
been expressed as planar quantities, such as the desired suspension linkage instant center 
locations in vehicle front- and side-view, ride camber, ride tread, ride caster, ride fore-aft, 
etc. (Please refer to SAE publication on vehicle dynamics terminology [11], for a 
description of parameters such as caster, camber, etc.).  Let the location of the front- and 

side-view instant centers be respectively, and , in a coordinate 

system fixed to the sprung mass. Let the wheel center location be represented by the 

vector . The swing center coordinates may be related to ride camber, ride tread, ride 

fore-aft, and ride caster, by the following equations 
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where is the conversion factor to go from radians to degrees. Similarly,  rtod
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Let (3 by 3 matrix) and (3 by 1 vector) represent respectively, the orientation and 
position of the wheel coordinate system E relative to . Then one may show that: 
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Correspondingly 
z
R
∂
∂ , the rate of change of wheel orientation with jounce-rebound, may 

be obtained using the following relationships. 

Let , 

where , are yaw, pitch, and roll parameters respectively. Then 
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 at zero jounce, when are zero. The rates of change of 

 with jounce-rebound are related to suspension geometric parameters as follows. 
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CONSTRAINT EQUATIONS FOR VARIOUS SUSPENSION LINKAGES 

All independent suspension linkages are typically comprised of a knuckle (the 
coupler) and several chains of links and joints in-parallel between the knuckle and the 
sprung mass. For the SLA suspension linkage, there are 3 such chains of links and joints, 
viz., 2 R-S chains (the control arms), and 1 S-S chain (the tie-rod). The position and 
velocity constraint equations for the various chains are as follows. 
R-S chain 
Position constraints: 

( ) ) 2rRpfdRp +•−+     (5) 
( −+ fdRp     (6) 

Velocity Constraints: 
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where and represent respectively, the position vector and orientation matrix of 
coordinate system E (the coordinate system on the knuckle) in , is the position vector 
of the control-arm outer ball-joint in E,  is a vector from to the inner hinge joint of 
the revolute joint, is the length of the control-arm, and is a unit vector inΣ along the 
revolute joint axis. The partial derivatives of and with respect to ,represent rates of 
change of orientation and position of the wheel during jounce-rebound. 
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S-S chain 
Position constraint: 

( ) ( ) 2rfdRpfdRp =−+•−+     (9) 
Velocity Constraint: 
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where the various parameters are as defined above, except that is the position vector in 
of the inner ball-joint. 
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The MacPherson strut suspension is comprised of a strut portion above which is a 

S-P chain from the sprung mass to the knuckle, and a R-S chain below, similar to the 
SLA suspension lower control arm. The tie-rod (or toe-link) is represented by a S-S chain 
as before. The position constraint equations for the S-P chain are as follows: 
S-P chain 
Position constraints: 

( ) 010 11 =+
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Velocity constraints: 
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where the parameters define the line of slide of the prismatic joint in E via the 
following equations: 

2211 ,,, cbca
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The synthesis equations for the lower control-arm (R-S chain) and the tie-rod (S-S) chain 
are the same as for the SLA suspension (i.e., Eqs. (5) – (10)). Multi-link suspension 
linkages typically have 3-5 S-S chains connected in parallel between the sprung mass and 
the knuckle with possibly a R-S chain thrown in when necessary to get an adequate 
number of constraints. The position and velocity constraint equations for these chains 
have all been discussed above. Raghavan [12] describes the synthesis of the various types 
of kinematic chains (R-S, S-P, and S-S) for planar situations and finitely separated 
synthesis positions. We suggest that specifying one design position (when the wheel is at 
zero jounce) and the rates of change of the various wheel kinematic parameters at that 
design position, is a good approach to identifying compact designs. 
 
SYNTHESIS FOR LINEAR TOE CURVES AND ROLL CENTER HEIGHT 

The tie-rod is modeled as a solid bar with a ball-joint at either end. For the 
present section, we may assume that the rest of the suspension mechanism (i.e., 
everything except the tie-rod) has already been synthesized. We move the wheel and this 
"incomplete" suspension (i.e., suspension minus tie-rod) through the range of jounce-
rebound motion by means of an ADAMS-type analysis. The tie-rod is then synthesized 
using three finitely separated design positions. For mathematical details and illustrative 
examples, please refer to the paper by Raghavan [13]. 

The roll center is considered an important factor in determining overall vehicle 
ride and handling quality. It is the point (in front-view) at which the line from the 
suspension instant center to the tire contact patch intersects the central plane.  From the 
standpoint of vehicle dynamics, the roll center is the point in front view, about which the 
sprung mass rolls when the vehicle goes into a turn. Raghavan [14] has developed a 
constraint equation specifying the relative lengths of the control arms for prescribed roll 
center height change. 

 
SYNTHESIS FOR PRESCRIBED ACKERMANN ERRORS 

In the traditional synthesis approach, the steering linkage of Figure 1(a) is 
approximated as a planar four-bar (Figure 1(b)) and synthesized for perfect Ackermann 
conditions by laying out two construction lines from the kingpin axes to the center of the 
rear axle, as shown in Figure 2. The ball joints connecting the steer-arms to the tie-rods 
are selected on these construction lines.  The resulting design is accurate in meeting the 
perfect Ackermann steer requirement through about 20 degrees of steer.  The traditional 
procedure is extended here to enable synthesis for prescribed values of Ackermann error 
because most real-world designs have some amount of Ackermann error deliberately 
designed into them to account for tire slip angles, which distort the so-called perfect 
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Ackermann geometry.  Consider the vector chain in Figure 3 representing the four-bar 
linkage of Figure 1(b). The horizontal and vertical components of the vector loop 
equation representing the four-bar linkage are (from Ref. 15): 

,0coscoscoscos 44332211 =+++ θθθθ rrrr    (16) 
.0sinsinsinsin 44332211 =+++ θθθθ rrrr     (17) 

After squaring and adding to eliminate , and rearranging terms we get 3θ
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360
00 42 =+ θθ        (19) 

where the subscript 0 represents the straight-ahead or zero-steer position. Suppose that 
the vehicle makes a left turn. The left wheel (in this case, the inner wheel) is steered 
inwards by degrees and the right wheel (the outer wheel) is steered by a 
corresponding amount, say . Using Eq (19) this may be represented as 

2θ∆

4θ∆
),cos()cos()cos( 44223442221 0000

θθθθθθθθ ∆−−∆+=+∆++∆+ KKK   (20) 
Eq. (20) serves as our synthesis equation. Since the design is independent of linkage 
scale, we may set and let .  0.11 =r 2.042 == rr

043 cos)2.0(21 θ−=r       (21) 

Fig. 1(b) 

Fig. 1(a) 

Fig. 2: Construction lines for Ackermann steer Fig. 1: Steering Linkage 
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Substituting the above values and expressions for  into Eq. (20) and using Eq. 
(19) to eliminate from the resulting expression we obtain an 
equation , relating  This may be used as follows.  For a 
given inner steer angle we compute the corresponding value of the outer steering 
wheel angle , using the following equation (the mathematical definition of 
Ackermann error ) 

4321 ,,, rrrr
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Substituting these values of ∆ and in the equation , we may 
solve for to determine the inclinations of the steer-arms at the zero steer position for 
a prescribed Ackermann error. 
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Fig. 3: Steering linkage as a planar 4-bar 
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USEFULNESS & SUMMARY 

Algebraic models for representing various suspension linkage types have been 
presented. They can be utilized as a synthesis tool to generate good starting points for 
detailed elastokinematic system optimization.  

 
REFERENCES 

1. C.H. Suh, “Synthesis and analysis of suspension mechanisms with use of 
displacement matrices,” SAE 890098. 

2. Brinks, G., “MacPherson and his struts,” Road and Track, November 1978, pg. 162. 
3. Enke, K., “Improvements of the Ride/Handling compromise by progress in the 

elastokinematic system of wheel suspension,” I. Mech. E. C117/83, 1983. 
4. Von der Ohe, M., “Front and rear suspension of the new Mercedes Model W201,” 

SAE 831045, 1983. 
5. Murakami, T., Uno, T., Iwasaki, H., Noguchi, H., “Development of a new multi-link 

front suspension,” SAE 890179, 1989. 
6. Suh, C.H., “Suspension analysis with instant screw axis theory.” Fifth 

Autotechnologies Conference and Exposition, Monte Carlo, SAE 910017, 1991 
7. Iijima, Y, and Noguchi, H., “The Development of a High-Performance Suspension 

for the New Nissan 300ZX,” SAE 841189. 
8. Fuhrmann, E., “Creation of the Porsche 928,” International Journal of Vehicle 

Design, vol. 1, no. 1, 1979, pp. 75-84. 
9. Simionescu, P.A., Smith, M.R., and Tempea, I., “Synthesis and Analysis of the Two-

Loop Translational Input Steering Mechanism,” Mechanism and Machine Theory, 
v.35, pp. 927-943, 2000. 

10. Dijksman, E., Kalker-Kalkman, C., and Smals, A., “The Locus of Intersections of the 
Mid-Normals at the Front-Wheels of a Four-Wheeled Vehicle Having a Fixed Axis 
in the Rear,” Proceedings of 10th World Congress on the Theory of Machines and 
Mechanisms, Oulu, Finland, June 20-24, 1999. 

11. Vehicle Dynamics Committee, “Vehicle Dynamics Terminology,” SAE# J670e, June 
1978, SAE. 

12. Raghavan, M., “Number and Dimensional Synthesis of Independent Suspension 
Mechanisms,” Mechanism and Machine Theory, Vol. 31, No. 8, 1996. 

13. Raghavan, M., “Suspension Mechanism Synthesis for Linear Toe Curves,” ASME 
DETC2002/MECH-34305, Montreal Canada, Sep 29 – Oct 2, 2002. 

14. Raghavan, M., “Suspension Synthesis for N:1 Roll Center Motion,” ASME 
DETC2003/DAC-48810, Chicago, Sep 3-5, 2003. 

15. Shigley, J., and Uicker, J., “Theory of Machines and Mechanisms,” McGraw-Hill, 
1980, pages 344-347. 


	INTRODUCTION
	SIGNIFICANCE OF THIS PAPER
	EXPRESSING REQUIREMENTS MATHEMATICALLY
	CONSTRAINT EQUATIONS FOR VARIOUS SUSPENSION LINKAGES
	SYNTHESIS FOR LINEAR TOE CURVES AND ROLL CENTER HEIGHT
	SYNTHESIS FOR PRESCRIBED ACKERMANN ERRORS
	USEFULNESS & SUMMARY
	REFERENCES

