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ABSTRACT

A two-degree-of-freedom (2-DOF) model comprising nonlinear delay di�erential equa-
tions (DDEs) is analyzed for self-excited oscillations during orthogonal turning. The model
includes multiple time delays, possibility of tool leaving cut, additional process damping
(due to 
ank interference), ploughing force, and shear-angle/friction-angle variation. An
algorithm to simulate tool dynamics and seek periodic solutions is developed based on
two methods: (i) Direct numerical integration and (ii) Shooting for DDEs. The multiple-
regenerative and tool-leaving-cut e�ects are simulated via an equivalent 1-DOF system by
introducing a time shift. The amplitude and minimum-period of limit cycles computed via
these two methods compare well. Numerical studies involving the machining parameters
are presented. The present plant model and dynamics could be useful for real time active
control of tool chatter. 1

INTRODUCTION

Self-excited vibrations that occur during machining are termed chatter. Chatter de-
grades surface �nish and causes tool breakage. Passive control of chatter involves limiting
the cutting parameters (like width and depth of cut), which in turn limits productivity. A
pioneeing stability analysis of SDOF regenerative chatter was done by Tobias and Fishwick
[1]. They considered the cutting force to be dependent on instantaneous chip thickness
and feed velocity. Hanna and Tobias [2] modeled the structure with nonlinear sti�ness and
hysteretic damping, and the cutting force as a cubic polynomial in chip-thickness-variation
(yielding nonlinear delay terms). Their analysis explained experimentally observed subcriti-
cal instability . Wu and Liu [3] considered a 2-DOF system with velocity-dependent friction
and an empirical ploughing force. Besides experimental veri�cation, their work showed that
chip { rake friction caused chatter whereas interference between tool nose and work limited
chatter. Berger et al. [4] used this model and obtained chaotic/aperiodic and limit-cycle dy-
namics during small and large amplitude chatter, respectively. Similar prechatter dynamics
were experimentally con�rmed by Johnson and Moon [5] who also presented a DDE model
(SDOF). The 2-DOF model of Tlusty and Ismail [6] revealed that tool leaving cut improves
stability. Nonlinearities due to tool leaving cut and due to interference between 
ank and
machined wave (causing additional process damping) were considered by Jemielniak and
Widota [7] and Tarng et al [8].

Ploughing force related damping, due to rounded tool nose and built up edge, was
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Figure 1: (a) Cutting tool system and coordinates; (b) Kinematics for shear angle [13] and
VC=T [11]

modeled by Wu [9] and Lee et al. [10] . Nosyreva and Molinari [11] considered velocity
dependent friction and ploughing force. Their multiple scales analysis revealed saturation
followed by reduction of amplitudes, in accord with experiments. Stepan [12] introduced an
additional (short) regeneration time which distributes the force along tool-chip interface .
The model predicted greater stability at high cutting speeds, as observed in experiments.
Using a 2-DOF chatter model with multiple delays and shear angle variation, Lin and Weng
[13] obtained chaotic chatter at certain widths of cut. In order to actively control turning-
tool chatter without reducing productivity, a plant model that contains all nonlinearities
and e�ects aiding and countering chatter is required. Hence, in this paper a comprehensive,
2-DOF, non-linear model incorporating multiple regeneration, etc., is studied .

EQUATIONS GOVERNING CHATTER

Figure 1(a) shows the tool-work system. Origin O of the x � y system denotes the
equilibrium (chatter free) position of the tool-tip. It moves (relative to work) along the
y-axis at a velocity V (cutting speed). The tool base (O0) and O have identical motion.
Point B and line BA denote the tool tip and the shear plane, respectively. During steady
cutting, BA coincides with OS. The displacement of B and A, with respect to O and S,
respectively, are (x, y) and (x0, y0), respectively. Quantities t1, �, �, 
, and �, denote
uncut chip thickness, shear- ,rake-, clearance-, and friction- angles, respectively, and the
corresponding `e'-subcripted quantity is the chatter-free value.

Referring to Fig. 1(a), the instantaneous uncut chip thickness is t1 = t1e +x0[t]�x[t].
The shankwise chatter displacement (measured from the mean line) during the nth-previous
pass of the tool is xnT = x[t � nT ]. Here T is the time for one revolution of work. During
large chatter motions the tool could disengage from the work (i.e., t1 < 0), causing the ma-
chining forces on the tool tip to vanish. Hence, the cut pro�le generated by the end of the
previous pass is given as x0 = min[x1T ; t1e+x2T ; 2t1e+x3T ; � � � ]. The multiple regenerative



e�ect is due to this dependence of chip thickness on the chatter displacements of previous
passes.

The shear angle varies due to tool vibration and waviness of previous-cut surface (Fig.
1(b)). Combining these e�ects yields [13],

� = �e+(��)A+(��)B ; (��)A = tan�1[ _x0=(V + _y0)]; (��)B = tan�1[� _x=(V + _y)] (1)

Steady state cutting tests show that the chip-rake friction coeÆcient, �(= tan[�]),
varies as � = �0 exp[�m�VC=T ] [3]. The coeÆcients �0 and m� are experimentally deter-
mined. The velocity of chip relative to tool (VC=T ) is obtained using the continuity, across
the shear plane, of the relative velocity [11]. This yields

VC=T =
(V + _y) sin[�e + (��)A]� _x cos[�e + (��)A]

cos[�e + (��)A � �e]
(2)

The chatter-free damping coeÆcients (cx; cy) represent structural and cutting process
damping. Additional cutting process damping arises due to interference of the tool 
ank with
the downward-inclined wavy machined surface [7, 8]. Hence, the total damping coeÆcients
are

hx = cx(1�H[� _x]�x�=
); hy = cy(1�H[� _x]�y�=
) (3)

HereH[�] is the Heaviside function and � is the angle (positive counterclockwise) between the
x-axis and the normal to the wavy surface (Fig. 1(a)). Hence, one obtains � = tan�1[ _x=(V +
_y)] and � = �e � �. As is evident, the ratio ��=
 increases[decreases] as the tool moves
down a convex[concave] surface, and hence the additional damping increases[decreases], as
expected, due to increasing[decreasing] interference between 
ank and machined wave.

Due to the (slight) roundededness of tool nose and the formation of built-up-edge
(which increases the e�ective nose radius), a portion of the work material gets displaced (i.e.,
extruded) under the tool. Thus a ploughing force (fx, fy) is exerted on the tool. Following
[9], the ploughing force components are considered as fx = fspVdm and fy = ��cfx. Here
Vdm, fsp, and �c, are the displaced volume of work, speci�c ploughing force, and friction
coeÆcent between tool nose and displaced work (assumed constant), respectively. The
volume of displaced work material is

Vdm = w

�
V

V tan 
e + _x
�

V 2

(V tan 
e + _x)2
tan 
e
2

�
 2 (4)

Here  is the depth of tool penetration (assumed constant), and w is the width of cut (ie.,
chip width measured perpendicular to x� y plane).

The cutting (FC) and thrust (FT ) forces (Fig. 1(a)) are given by the Merchants Circle
relations, i.e.,

FC =
wt1�s cos[�� �]

sin[�] cos[�+ �� �]
; FT =

wt1�s sin[�� �]

sin[�] cos[�+ �� �]
(5)

where �s is the ultimate shear strength. Considering the cutting-, thrust-, ploughing-, and
total damping- forces, the equations governing the chatter motions are written as (Fig. 1),

m�x+ hx _x+ kxx =
�
�FC sin[�] + FT cos[�] + fx �

�
FT + fx

�
e

�
H[t1] (6)

m�y + hy _y + kyy =
�
�FC cos[�]� FT sin[�] + fy �

�
� FC + fy

�
e

�
H[t1] (7)
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Figure 2: (a) Time shift; (b) Multiple Regeneration

where (�)e denotes chatter-free evaluations (i.e., x = _x = y = _y = 0). These are nonlinear
delay di�erential equations (DDEs) as they contain the multiple regenerative e�ect (arising
due to dependence of FC and FT on t1, and characterized by multiple delay terms). The
tool leaving cut e�ect appears via H[t1]).

NUMERICAL SOLUTION

The state vector is de�ned as fX1; X2; X3; X4g
T � fx; _x; y; _ygT . The resulting sys-

tem of DDEs, i.e., _X[t] = F[t;X[t];X[t � � ]] subject to X[t] = �[t] = 0 for �� � t � 0,
is numericaly integated using the RK-4 method. The delay � equals nT (integer n is the
previous-pass number corresponding to the point x0 on the previous cut-pro�le). Integration
is performed over interval [0; T ] (i.e., one revolution of workpiece). Figure 2(a) shows the
vector sum of x and y chatter displacements, i.e, the present displacement-pro�le P1. The
horizontal axis denotes time and, equivalently, the distance along the work circumference.
Thus relations x[t] = P1[t

�], t� = t + y=V , hold. Thus, by using this time shift the ef-
fect of y-chatter is incorporated in the present-displacement pro�le, and consequently in the
previous-cut pro�le. The instantaneous chip thickness is calculated using both these pro�les,
and then used to obtain machining forces. If t1 > 0[t1 < 0] the tool is inside[outside] the
cut and machining forces are non-zero[zero]. A step-size bisection is used to determine the
instant when the tool leaves or enters the cut.

At the end of the integration interval, the previous cut-pro�le is updated (using inter-
polation) with that state { chosen out of the present-displacement and previous-cut pro�les
{ that has mimimum X1[t

�]. The updated cut-pro�le is used (with interpolation), during
the next interval of integration, as the initial function (�[t]) and also to obtain t1. The
Poincar�e surface f(X1; X2; X3; X4) : X3 = 0; X4 > 0g is de�ned, and relative di�erences in
X1, X2, X4 are computed over succesive surface intersections. If these di�erences remain
small for the ith and (i + m)th intersection (m being the smallest positive integer) then
convergence to a m-period limit cycle occurs and the period is the interval between these
two intersections. A trivial �xed point is obtained if the intersections are always trivial. All



integrations are done with unshifted time t as the integration variable.

Direct Integration Algorithm

This entails forward time integration for a speci�ed number of revolutions. The algo-
rithm is:
[0] Initialize �[t] (intial function) and Pro�le to zero. (Pro�le contains t�, X1, X3, X4,
corresponding to previous cut-pro�le).
[1] Integration over pth pass [0; T ]: Integrate over step [tI ; tO]; Perform time shift t�O  
tO+y[tO]=V ; Obtain present displacement-pro�le P[t�O ] X[tO ]; Using interpolation access
Pro�le at t�O to extract X0[t

�
O], i.e., the state vector corresponding to previous cut-pro�le;

Calculate instantaneous chip thickness t1  t1e +X10 [t
�
O ]� P1[t

�
O ]; If t1 changes sign, i.e.,

tool leaves or enters the cut, use bisection; Tooldisp (t�O ;P[t
�
O ]).

[2] Updating Pro�le: Using interpolation Pro�le (t�O;minX1
(Pro�le; Tooldisp)).

[3] Check convergence to limit cycle or �xed point. Exit if converged or if number of passes
exceeds prescribed limit, else continue at [1]. If converged to limit cycle then �nd amplitude
and minimum period.

Figure 2(b) shows the multiple regenerative e�ect, similar to that reported in [6, 7].
Each continuous wave represents tool displacement-pro�le of the pass number indicated
against it. Solid lines represent machined surface (cut pro�le) and dotted ones indicate
tool disengagement. The displacement-pro�le for each pass is referenced to the mean-cut
line (chatter-free) of that pass. Mean lines of succesive passes appear at a distance t1e be-
low. The tool leaves/enters the cut multiple times during a pass. It is observed that the
displacement-pro�le of a pass intersects those of its subsequent two passes only, i.e., the
delay is at most 2T . Hence, in order to implement the following shooting method �[t] is
assumed to be de�ned over [�2T; 0].

Shooting Method for Periodic Solutions

When using direct integration, converegence to a periodic state could be very slow for
certain parameter ranges and initial conditions. Hence, a shooting method is considered.
This iterative technique uses Newtons method to converge to a periodic solution, if one exist.
Following Luzyanina et al. [14] one seeks an intial function (i.e., ��[t] de�ned over [�2T; 0])
lying on the limit cycle, and the associated period T �. Let XT [�] denote the segment of
the solution obtained over [T � 2T; T ] subject to initial function �. In order to impose
the condition that the intial function being sought lies on the limit cycle, we consider the

residue equation system r[�; T ]
4
= XT [�] � � = 0. This system, being indeterminate, is

augmented with a suitably chosen auxillary scalar equation s[�; T ] = 0. An iterative solu-
tion of these equations would thus converge to (��; T �). A �rst-order Taylor's expansion of
these equations yields,"

(@XT =@�)
(i)
� I (@XT =@T )

(i)

(@s=@�)
(i)

(@s=@T )
(i)

#�
��(i+1)

�T (i+1)

�
= �

�
r[�(i); T (i)]
s[�(i); T (i)]

�
(8)

Introduce notation (@XT =@�)
(i)
� S(i), (@XT =@T )

(i)
� g(i), (@s=@�)

(i)
� c(i), and

(@s=@T )
(i)
� d(i). The superscript (i) in the coeÆcient matrix and in the driving vec-

tor (right hand side) denote evaluations at the solution (�(i); T (i)) obtained after the ith



iteration. An initial guess (�(0); T (0)) of (��; T �) is chosen. The algorithm for the (i+1)th

iteration (i = 0; 1; 2; : : :) is: (i) Integrate the DDE's over [0; T (i)] subject to initial function
�(i); (ii) Evaluate the coeÆcient matrix (using �nite di�erences) and the driving vector,
and solve Eq.(8) to obtain corrections (��(i+1);�T (i+1)); (iii) Use ��(i+1) and �T (i+1)

to test convergence. If convergence test passes then (��; T �) (converged solution) has been
obtained, else iterate the solution, i.e., �(i+1) = �(i) +��(i), T (i+1) = T (i) +�T (i).

Implementation entails discretization of the n-dimensional initial function vector at

(N+1) equally spaced time stations within [�2T; 0], i.e., �(i) = f�
(i)
11 ; :::; �

(i)
1k ; :::; �

(i)
1(N+1); :::;

�
(i)
j1 ; :::; �

(i)
jk ; :::; �

(i)
j(N+1); :::; �

(i)
n(N+1)g

T . Step (i) is performed using the discretized initial

function (with interpolation between stations, if required). Using interpolation on the inte-

grated solution vector, the discretized solution vector X
(i)
T

= fxT
(i)
11 ; :::; xT

(i)
n(N+1)g

T is ob-

tained at (N+1) stations within [T (i)�2T; T (i)]. The discretized driving vector is now read-

ily obtained. Introduce the equivalent indexing l � (j� 1)(N +1)+ k, e.g., �
(i)
l � �

(i)
jk . The

discretized (n(N+1))�(n(N+1)) matrix S(i) is obtained via. �nite di�erences. Using the ini-

tial function with lth element perturbed, i.e., ~�(i) = f�
(i)
1 ; :::; �

(i)
l +�; :::; �

(i)
(nN+n)g

T , the per-

turbed solution vector ~X
(i)
T

= f~x
(i)
T 1; :::; ~x

(i)
T (nN+n)g

T is obtained. Then S
(i)
ml = (~x

(i)
Tm�x

(i)
Tm)=�,

m = 1; : : : ; nN + n. This procedure is done for l = 1; : : : ; nN + n. The discretized
(nN + n)-dimension vector g(i) is obtained by perturbing ~T (i) = T (i) + � and comput-

ing g
(i)
l = (x

(i)
~T l
� x

(i)
T l)=� using the unperturbed initial function �(i).

The discretized auxillary equation is speci�ed as s(i)
4
=

nN+nX
l=1

F
(i)
l (�

(i)
l � xT

(i)
l ). Here

F
(i)
l represents the discretization of the time derivative of solution xT or, equivalently, the

driving vector (RHS) in the state equations. The (nN + n) discretized vector c(i) is com-

puted as c
(i)
l = (~s(i)�s(i))=� where ~s(i) is based on T (i) and ~�(i) with lth element perturbed.

Further, d(i) = (~s(i)�s(i))=� where ~s(i) is based on ~T (i) and �(i). Hence Eq. (8) represents a

system of size (n(N+1)+1). If j��
(i+1)
l =�

(i)
l j < �, and j�T (i+1)=T (i)j < � then convergence

is achieved. The minimum period is computed based on Poincar�e surface intersections that
occur within the converged period T �.

RESULTS AND DISCUSSION

Unless mentioned otherwise, all e�ects appearing in the formulation are considered,
and direct integration with the following data is used: Cutting parameters [3, 9, 10, 13]:-
Dia of work = 25 mm, t1e = 0:15 mm, w = 4:0 mm, V = 200 m/min, �e = 38Æ, m� =

10�06, �e = 50:6Æ, 
e = 20, fsp = 4:1 � 105 N/mm
3
, �0 = �c = 0:3, �s = 700N/mm

2
,

 = 0:0046 mm; Vibration parameters [8]:- m = 40.87kg, cx = cy = 19.73 N.s/mm, �x =
1.464, �y = 5.564, and kx = ky = 180 kN/m.

Figure 3(a) shows the transient x-chatter response for parameters which make the lin-
earized system unstable. The displacement increases until a steady state (limit cycle) is
slowly reached. The limit cycle trajectory (in the _x{x plane) obtained via both methods
(i.e., direct integration and shooting) overlap. (Fig. 3(b)). The period, amplitude, and
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Figure 3: (a) Transient x-chatter; (b) Limit cycle; Steady state{ (c) x-chatter, (d) Additional
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number of work revolutions for convergence are 0.00950141, 0.106324, and 7078, respec-
tively, via direct integration, and 0.106292, 0.00950090, and 1492, respectively, via shooting.
Steady state responses for x-chatter, additional damping force due to 
ank interference, and
ploughing force are shown in Fig. 3(c, d, e, f). The additional damping vanishes when the
tool moves upward (Fig. 3(c, d)). An increase in width-of-cut causes the ploughing force
magnitude to increase and the tool to disengage from the work more frequently and for
longer duration (Fig. 3(e, f)). Tool disengagement is characterized by the ploughing force
suddenly vanishing.

Figure 4(a) shows the e�ect of the chatter-free uncut chip thickness on the limit cycle
amplitudes obtained for varying widths of cut. At the critical width (i.e., 3.51 mm for t1e =
0.5 mm and 3.64 mm for t1e = 0.15 mm and 0.3mm) the solution transforms from a �xed
point to a limit cycle, i.e., a Hopf bifurcation occurs. For t1e = 0.15 mm and 0.3 mm a
sudden jump to a �nite-amplitude limit cyle occurs, thus indicating a subcritical bifurcation.
Hence, for these cases �nite amplitude instability (i.e., pre-chatter motion) is possible for
sub-critical widths. As expected, the chatter amplitude increases with uncut chip thickness
(since cutting forces increase with t1e). Figure 4(b) shows amplitude versus width for cut-
ting velocities 200 m/min and 220 m/min. For a lower cutting speed, the jump occurs for a
smaller width and the amplitude is higher. The jump phenomenon dissapears for larger t1e
(e.g., 0.5 mm, results not displayed for brevity). An increase in additional process damping
coeÆcients, �x and �y, results in lower chatter amplitudes (for t1e = 0:5mm) as displayed in
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Figure 4(c). A similar increase when t1e=0.15 mm (result not displayed for brevity) causes
the jump to occur at a larger width of cut. The e�ect of cutting velocity is shown in Fig.
4(d) for various models. Model 'C' contains all e�ects, model 'B' neglects ploughing force
and friction variation, and model 'A' further neglects 
ank intereference. Model A pre-
dicts a decrease in amplitude when the cutting speed is increased. When additional process
damping is included (model B), the amplitude at �rst increases with cutting speed and then
(beyond V = 130 m/min) decreases. The amplitudes are lower for the additionally damped
system (compare A and B). A sudden increase in the rate of amplitude reduction occurs at
V = 240 m/min (model B). Further addition of ploughing force and friction variation ef-
fects (model C) yield a marginal reduction in amplitudes (compare B and C). A �xed point
(i.e., cessation of chatter) occurs beyond V = 250 m/min. Figure 4(e) con�rms that while
the e�ect of ploughing force is marginal for the value of fsp as considered here, it generally
yields a reduction in amplitude. The variation in amplitude with the chatter-free uncut chip
thickness is shown in Fig. 4(f). It is interesting to note that the trend of monotonically
increasing amplitudes is reversed at higher chip thicknesses.

CONLUSIONS AND SCOPE

A comprehensive 2-DOF model of tool dynamics during turning has been considered



and the following conclusions are made: (i) For the parameter ranges considered, period-1
motion describes the tool dynamics. (ii) Features of a subcritical Hopf bifurcation could ap-
pear in the amplitude versus width-of-cut plane, for certain parameter values. This implies
the possibility of subcritical instability characterized by sudden onset of �nite-amplitude
chatter. (iii) Additional process damping causes a reduction in chatter amplitudes, and the
subcritical instability to occur at a larger width of cut. (iv) An increase in width of cut
causes frequent tool-leaving-cut events and increased chatter amplitudes. (v) The chatter
amplitude at �rst increases and then decreases when the cutting velocity or the uncut chip
thickness is increased. (vii) For the parameter ranges considered, variation in friction angle
and/or ploughing force have a marginal e�ect. The shooting method could be made more
eÆcient by using Newton Picard iterations. Structural nonlinearities could be included in
the model. Hence, real-time active supression of chatter could be addressed.
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